3.7.17 \(\int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx\) [617]

3.7.17.1 Optimal result
3.7.17.2 Mathematica [A] (verified)
3.7.17.3 Rubi [A] (verified)
3.7.17.4 Maple [B] (verified)
3.7.17.5 Fricas [A] (verification not implemented)
3.7.17.6 Sympy [F]
3.7.17.7 Maxima [F(-2)]
3.7.17.8 Giac [B] (verification not implemented)
3.7.17.9 Mupad [F(-1)]

3.7.17.1 Optimal result

Integrand size = 20, antiderivative size = 315 \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\frac {(b c-a d)^4 (5 b c+7 a d) \sqrt {a+b x} \sqrt {c+d x}}{512 b^4 d^3}-\frac {(b c-a d)^3 (5 b c+7 a d) (a+b x)^{3/2} \sqrt {c+d x}}{768 b^4 d^2}-\frac {(b c-a d)^2 (5 b c+7 a d) (a+b x)^{5/2} \sqrt {c+d x}}{192 b^4 d}-\frac {(b c-a d) (5 b c+7 a d) (a+b x)^{5/2} (c+d x)^{3/2}}{96 b^3 d}-\frac {(5 b c+7 a d) (a+b x)^{5/2} (c+d x)^{5/2}}{60 b^2 d}+\frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(b c-a d)^5 (5 b c+7 a d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{512 b^{9/2} d^{7/2}} \]

output
-1/96*(-a*d+b*c)*(7*a*d+5*b*c)*(b*x+a)^(5/2)*(d*x+c)^(3/2)/b^3/d-1/60*(7*a 
*d+5*b*c)*(b*x+a)^(5/2)*(d*x+c)^(5/2)/b^2/d+1/6*(b*x+a)^(5/2)*(d*x+c)^(7/2 
)/b/d-1/512*(-a*d+b*c)^5*(7*a*d+5*b*c)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/ 
2)/(d*x+c)^(1/2))/b^(9/2)/d^(7/2)-1/768*(-a*d+b*c)^3*(7*a*d+5*b*c)*(b*x+a) 
^(3/2)*(d*x+c)^(1/2)/b^4/d^2-1/192*(-a*d+b*c)^2*(7*a*d+5*b*c)*(b*x+a)^(5/2 
)*(d*x+c)^(1/2)/b^4/d+1/512*(-a*d+b*c)^4*(7*a*d+5*b*c)*(b*x+a)^(1/2)*(d*x+ 
c)^(1/2)/b^4/d^3
 
3.7.17.2 Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 293, normalized size of antiderivative = 0.93 \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x} \left (-105 a^5 d^5+5 a^4 b d^4 (83 c+14 d x)-2 a^3 b^2 d^3 \left (273 c^2+136 c d x+28 d^2 x^2\right )+6 a^2 b^3 d^2 \left (25 c^3+58 c^2 d x+36 c d^2 x^2+8 d^3 x^3\right )+a b^4 d \left (-245 c^4+160 c^3 d x+3384 c^2 d^2 x^2+4448 c d^3 x^3+1664 d^4 x^4\right )+5 b^5 \left (15 c^5-10 c^4 d x+8 c^3 d^2 x^2+432 c^2 d^3 x^3+640 c d^4 x^4+256 d^5 x^5\right )\right )}{7680 b^4 d^3}-\frac {(b c-a d)^5 (5 b c+7 a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{512 b^{9/2} d^{7/2}} \]

input
Integrate[x*(a + b*x)^(3/2)*(c + d*x)^(5/2),x]
 
output
(Sqrt[a + b*x]*Sqrt[c + d*x]*(-105*a^5*d^5 + 5*a^4*b*d^4*(83*c + 14*d*x) - 
 2*a^3*b^2*d^3*(273*c^2 + 136*c*d*x + 28*d^2*x^2) + 6*a^2*b^3*d^2*(25*c^3 
+ 58*c^2*d*x + 36*c*d^2*x^2 + 8*d^3*x^3) + a*b^4*d*(-245*c^4 + 160*c^3*d*x 
 + 3384*c^2*d^2*x^2 + 4448*c*d^3*x^3 + 1664*d^4*x^4) + 5*b^5*(15*c^5 - 10* 
c^4*d*x + 8*c^3*d^2*x^2 + 432*c^2*d^3*x^3 + 640*c*d^4*x^4 + 256*d^5*x^5))) 
/(7680*b^4*d^3) - ((b*c - a*d)^5*(5*b*c + 7*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + 
 d*x])/(Sqrt[d]*Sqrt[a + b*x])])/(512*b^(9/2)*d^(7/2))
 
3.7.17.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 285, normalized size of antiderivative = 0.90, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {90, 60, 60, 60, 60, 60, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx\)

\(\Big \downarrow \) 90

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \int (a+b x)^{3/2} (c+d x)^{5/2}dx}{12 b d}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \int (a+b x)^{3/2} (c+d x)^{3/2}dx}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \int (a+b x)^{3/2} \sqrt {c+d x}dx}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \left (\frac {(b c-a d) \int \frac {(a+b x)^{3/2}}{\sqrt {c+d x}}dx}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \int \frac {\sqrt {a+b x}}{\sqrt {c+d x}}dx}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}}dx}{2 d}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \int \frac {1}{b-\frac {d (a+b x)}{c+d x}}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{d}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {(a+b x)^{5/2} (c+d x)^{7/2}}{6 b d}-\frac {(7 a d+5 b c) \left (\frac {(b c-a d) \left (\frac {3 (b c-a d) \left (\frac {(b c-a d) \left (\frac {(a+b x)^{3/2} \sqrt {c+d x}}{2 d}-\frac {3 (b c-a d) \left (\frac {\sqrt {a+b x} \sqrt {c+d x}}{d}-\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{\sqrt {b} d^{3/2}}\right )}{4 d}\right )}{6 b}+\frac {(a+b x)^{5/2} \sqrt {c+d x}}{3 b}\right )}{8 b}+\frac {(a+b x)^{5/2} (c+d x)^{3/2}}{4 b}\right )}{2 b}+\frac {(a+b x)^{5/2} (c+d x)^{5/2}}{5 b}\right )}{12 b d}\)

input
Int[x*(a + b*x)^(3/2)*(c + d*x)^(5/2),x]
 
output
((a + b*x)^(5/2)*(c + d*x)^(7/2))/(6*b*d) - ((5*b*c + 7*a*d)*(((a + b*x)^( 
5/2)*(c + d*x)^(5/2))/(5*b) + ((b*c - a*d)*(((a + b*x)^(5/2)*(c + d*x)^(3/ 
2))/(4*b) + (3*(b*c - a*d)*(((a + b*x)^(5/2)*Sqrt[c + d*x])/(3*b) + ((b*c 
- a*d)*(((a + b*x)^(3/2)*Sqrt[c + d*x])/(2*d) - (3*(b*c - a*d)*((Sqrt[a + 
b*x]*Sqrt[c + d*x])/d - ((b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt 
[b]*Sqrt[c + d*x])])/(Sqrt[b]*d^(3/2))))/(4*d)))/(6*b)))/(8*b)))/(2*b)))/( 
12*b*d)
 

3.7.17.3.1 Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.7.17.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1036\) vs. \(2(265)=530\).

Time = 1.56 (sec) , antiderivative size = 1037, normalized size of antiderivative = 3.29

method result size
default \(\text {Expression too large to display}\) \(1037\)

input
int(x*(b*x+a)^(3/2)*(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
1/15360*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(105*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c 
))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^6*d^6-75*ln(1/2*(2*b*d*x+2*(( 
b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b^6*c^6-210*((b*x+ 
a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a^5*d^5+150*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1 
/2)*b^5*c^5+675*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+ 
b*c)/(b*d)^(1/2))*a^4*b^2*c^2*d^4-300*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^ 
(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^3*b^3*c^3*d^3-225*ln(1/2*(2*b*d* 
x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^2*b^4*c^4* 
d^2+270*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b* 
d)^(1/2))*a*b^5*c^5*d+140*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a^4*b*d^5*x+ 
830*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a^4*b*c*d^4-1092*((b*x+a)*(d*x+c)) 
^(1/2)*(b*d)^(1/2)*a^3*b^2*c^2*d^3-490*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2) 
*a*b^4*c^4*d+300*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a^2*b^3*c^3*d^2+2560* 
b^5*d^5*x^5*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)-450*ln(1/2*(2*b*d*x+2*((b* 
x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a^5*b*c*d^5+8896*a*b 
^4*c*d^4*x^3*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+432*a^2*b^3*c*d^4*x^2*((b 
*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+6768*a*b^4*c^2*d^3*x^2*((b*x+a)*(d*x+c))^ 
(1/2)*(b*d)^(1/2)+320*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)*a*b^4*c^3*d^2*x+ 
3328*a*b^4*d^5*x^4*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+6400*b^5*c*d^4*x^4* 
((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+96*a^2*b^3*d^5*x^3*((b*x+a)*(d*x+c)...
 
3.7.17.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 894, normalized size of antiderivative = 2.84 \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\left [-\frac {15 \, {\left (5 \, b^{6} c^{6} - 18 \, a b^{5} c^{5} d + 15 \, a^{2} b^{4} c^{4} d^{2} + 20 \, a^{3} b^{3} c^{3} d^{3} - 45 \, a^{4} b^{2} c^{2} d^{4} + 30 \, a^{5} b c d^{5} - 7 \, a^{6} d^{6}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \, {\left (1280 \, b^{6} d^{6} x^{5} + 75 \, b^{6} c^{5} d - 245 \, a b^{5} c^{4} d^{2} + 150 \, a^{2} b^{4} c^{3} d^{3} - 546 \, a^{3} b^{3} c^{2} d^{4} + 415 \, a^{4} b^{2} c d^{5} - 105 \, a^{5} b d^{6} + 128 \, {\left (25 \, b^{6} c d^{5} + 13 \, a b^{5} d^{6}\right )} x^{4} + 16 \, {\left (135 \, b^{6} c^{2} d^{4} + 278 \, a b^{5} c d^{5} + 3 \, a^{2} b^{4} d^{6}\right )} x^{3} + 8 \, {\left (5 \, b^{6} c^{3} d^{3} + 423 \, a b^{5} c^{2} d^{4} + 27 \, a^{2} b^{4} c d^{5} - 7 \, a^{3} b^{3} d^{6}\right )} x^{2} - 2 \, {\left (25 \, b^{6} c^{4} d^{2} - 80 \, a b^{5} c^{3} d^{3} - 174 \, a^{2} b^{4} c^{2} d^{4} + 136 \, a^{3} b^{3} c d^{5} - 35 \, a^{4} b^{2} d^{6}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{30720 \, b^{5} d^{4}}, \frac {15 \, {\left (5 \, b^{6} c^{6} - 18 \, a b^{5} c^{5} d + 15 \, a^{2} b^{4} c^{4} d^{2} + 20 \, a^{3} b^{3} c^{3} d^{3} - 45 \, a^{4} b^{2} c^{2} d^{4} + 30 \, a^{5} b c d^{5} - 7 \, a^{6} d^{6}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) + 2 \, {\left (1280 \, b^{6} d^{6} x^{5} + 75 \, b^{6} c^{5} d - 245 \, a b^{5} c^{4} d^{2} + 150 \, a^{2} b^{4} c^{3} d^{3} - 546 \, a^{3} b^{3} c^{2} d^{4} + 415 \, a^{4} b^{2} c d^{5} - 105 \, a^{5} b d^{6} + 128 \, {\left (25 \, b^{6} c d^{5} + 13 \, a b^{5} d^{6}\right )} x^{4} + 16 \, {\left (135 \, b^{6} c^{2} d^{4} + 278 \, a b^{5} c d^{5} + 3 \, a^{2} b^{4} d^{6}\right )} x^{3} + 8 \, {\left (5 \, b^{6} c^{3} d^{3} + 423 \, a b^{5} c^{2} d^{4} + 27 \, a^{2} b^{4} c d^{5} - 7 \, a^{3} b^{3} d^{6}\right )} x^{2} - 2 \, {\left (25 \, b^{6} c^{4} d^{2} - 80 \, a b^{5} c^{3} d^{3} - 174 \, a^{2} b^{4} c^{2} d^{4} + 136 \, a^{3} b^{3} c d^{5} - 35 \, a^{4} b^{2} d^{6}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{15360 \, b^{5} d^{4}}\right ] \]

input
integrate(x*(b*x+a)^(3/2)*(d*x+c)^(5/2),x, algorithm="fricas")
 
output
[-1/30720*(15*(5*b^6*c^6 - 18*a*b^5*c^5*d + 15*a^2*b^4*c^4*d^2 + 20*a^3*b^ 
3*c^3*d^3 - 45*a^4*b^2*c^2*d^4 + 30*a^5*b*c*d^5 - 7*a^6*d^6)*sqrt(b*d)*log 
(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*s 
qrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) - 4*(1280* 
b^6*d^6*x^5 + 75*b^6*c^5*d - 245*a*b^5*c^4*d^2 + 150*a^2*b^4*c^3*d^3 - 546 
*a^3*b^3*c^2*d^4 + 415*a^4*b^2*c*d^5 - 105*a^5*b*d^6 + 128*(25*b^6*c*d^5 + 
 13*a*b^5*d^6)*x^4 + 16*(135*b^6*c^2*d^4 + 278*a*b^5*c*d^5 + 3*a^2*b^4*d^6 
)*x^3 + 8*(5*b^6*c^3*d^3 + 423*a*b^5*c^2*d^4 + 27*a^2*b^4*c*d^5 - 7*a^3*b^ 
3*d^6)*x^2 - 2*(25*b^6*c^4*d^2 - 80*a*b^5*c^3*d^3 - 174*a^2*b^4*c^2*d^4 + 
136*a^3*b^3*c*d^5 - 35*a^4*b^2*d^6)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^5*d 
^4), 1/15360*(15*(5*b^6*c^6 - 18*a*b^5*c^5*d + 15*a^2*b^4*c^4*d^2 + 20*a^3 
*b^3*c^3*d^3 - 45*a^4*b^2*c^2*d^4 + 30*a^5*b*c*d^5 - 7*a^6*d^6)*sqrt(-b*d) 
*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/( 
b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) + 2*(1280*b^6*d^6*x^5 + 75 
*b^6*c^5*d - 245*a*b^5*c^4*d^2 + 150*a^2*b^4*c^3*d^3 - 546*a^3*b^3*c^2*d^4 
 + 415*a^4*b^2*c*d^5 - 105*a^5*b*d^6 + 128*(25*b^6*c*d^5 + 13*a*b^5*d^6)*x 
^4 + 16*(135*b^6*c^2*d^4 + 278*a*b^5*c*d^5 + 3*a^2*b^4*d^6)*x^3 + 8*(5*b^6 
*c^3*d^3 + 423*a*b^5*c^2*d^4 + 27*a^2*b^4*c*d^5 - 7*a^3*b^3*d^6)*x^2 - 2*( 
25*b^6*c^4*d^2 - 80*a*b^5*c^3*d^3 - 174*a^2*b^4*c^2*d^4 + 136*a^3*b^3*c*d^ 
5 - 35*a^4*b^2*d^6)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^5*d^4)]
 
3.7.17.6 Sympy [F]

\[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\int x \left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {5}{2}}\, dx \]

input
integrate(x*(b*x+a)**(3/2)*(d*x+c)**(5/2),x)
 
output
Integral(x*(a + b*x)**(3/2)*(c + d*x)**(5/2), x)
 
3.7.17.7 Maxima [F(-2)]

Exception generated. \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x*(b*x+a)^(3/2)*(d*x+c)^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.7.17.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2677 vs. \(2 (265) = 530\).

Time = 0.63 (sec) , antiderivative size = 2677, normalized size of antiderivative = 8.50 \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\text {Too large to display} \]

input
integrate(x*(b*x+a)^(3/2)*(d*x+c)^(5/2),x, algorithm="giac")
 
output
1/7680*(40*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2*(b*x + a)*(4*(b*x + a)* 
(6*(b*x + a)/b^3 + (b^12*c*d^5 - 25*a*b^11*d^6)/(b^14*d^6)) - (5*b^13*c^2* 
d^4 + 14*a*b^12*c*d^5 - 163*a^2*b^11*d^6)/(b^14*d^6)) + 3*(5*b^14*c^3*d^3 
+ 9*a*b^13*c^2*d^4 + 15*a^2*b^12*c*d^5 - 93*a^3*b^11*d^6)/(b^14*d^6))*sqrt 
(b*x + a) + 3*(5*b^4*c^4 + 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 + 20*a^3*b*c* 
d^3 - 35*a^4*d^4)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a 
)*b*d - a*b*d)))/(sqrt(b*d)*b^2*d^3))*c^2*abs(b) + 640*(sqrt(b^2*c + (b*x 
+ a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*(4*(b*x + a)/b^2 + (b^6*c*d^3 
 - 13*a*b^5*d^4)/(b^7*d^4)) - 3*(b^7*c^2*d^2 + 2*a*b^6*c*d^3 - 11*a^2*b^5* 
d^4)/(b^7*d^4)) - 3*(b^3*c^3 + a*b^2*c^2*d + 3*a^2*b*c*d^2 - 5*a^3*d^3)*lo 
g(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sq 
rt(b*d)*b*d^2))*a*c^2*abs(b)/b + 8*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*(2 
*(4*(b*x + a)*(6*(b*x + a)*(8*(b*x + a)/b^4 + (b^20*c*d^7 - 41*a*b^19*d^8) 
/(b^23*d^8)) - (7*b^21*c^2*d^6 + 26*a*b^20*c*d^7 - 513*a^2*b^19*d^8)/(b^23 
*d^8)) + 5*(7*b^22*c^3*d^5 + 19*a*b^21*c^2*d^6 + 37*a^2*b^20*c*d^7 - 447*a 
^3*b^19*d^8)/(b^23*d^8))*(b*x + a) - 15*(7*b^23*c^4*d^4 + 12*a*b^22*c^3*d^ 
5 + 18*a^2*b^21*c^2*d^6 + 28*a^3*b^20*c*d^7 - 193*a^4*b^19*d^8)/(b^23*d^8) 
)*sqrt(b*x + a) - 15*(7*b^5*c^5 + 5*a*b^4*c^4*d + 6*a^2*b^3*c^3*d^2 + 10*a 
^3*b^2*c^2*d^3 + 35*a^4*b*c*d^4 - 63*a^5*d^5)*log(abs(-sqrt(b*d)*sqrt(b*x 
+ a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b^3*d^4))*c*d*a...
 
3.7.17.9 Mupad [F(-1)]

Timed out. \[ \int x (a+b x)^{3/2} (c+d x)^{5/2} \, dx=\int x\,{\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{5/2} \,d x \]

input
int(x*(a + b*x)^(3/2)*(c + d*x)^(5/2),x)
 
output
int(x*(a + b*x)^(3/2)*(c + d*x)^(5/2), x)